04-12-2007, 13:08:24
Supongo que las fórmulas proporcionadas por Donatien determinan la influencia de coriolis sobre el movimiento horizontal.
Ese movimento también se verá afectado por la conservación del momento angular ¿O es lo mismo?
Ya que me lo estáis explicando, hacedlo como dios manda
Si no, no hay quien se aclare
Ese movimento también se verá afectado por la conservación del momento angular ¿O es lo mismo?
Quote:6.6.6 GFD Lab VI: An experiment on the Earth’s rotationY además habría que tener en cuenta la desviación causado por coriolis al movimiento vertical; al fin y al cabo, el agua que cae por el agujero va "de arriba a abajo" y también tendrá un componente vertical que deberá ser igualmente cuantificado y que también se ve afectado por una desviación (está máxima en el ecuador y mínima en los polos). ¿La distancia recorrida verticalmente debe ser la de la altura del agua en el recipiente o la de la altura hasta el punto de reposo?
A classic experiment on the Earth’s rotation was carried out by Perrot in
185913. It is directly analogous to the radial inflow experiment, GFD Lab III,
except that the Earth’s spin is the source of rotation rather than a rotating
table. Perrot filled a large cylinder with water (the cylinder had a hole in the
middle of its base plugged with a cork, as sketched in Fig.6.20) and left it
standing for two days. He returned and released the plug. As fluid flowed in
toward the drain-hole it conserved angular momentum, thus ‘concentrating’
the rotation of the Earth, and acquired a ‘spin’ that was cyclonic (in the
same sense of rotation as the Earth)
According to theory below, we expect to see the fluid spiral in the same
sense of rotation as the Earth. The close analogue with the radial inflow
experiment is clear when one realizes that the container sketched in Fig 6.20
is on the rotating Earth and experiences a rotation rate of Ω × sinlat!
Theory We suppose that a particle of water initially on the outer rim of
the cylinder at radius r1 moves inwards conserving angular momentum until
it reaches the drain hole, at radius ro – see Fig. 6.21. The earth’s rotation
Ωearth resolved in the direction of the local vertical is Ωearth sin ϕ where ϕ is
the latitude. Therefore a particle initially at rest relative to the cylinder at
radius r1, has a speed of v1 = r1Ωearth sin ϕ in the inertial frame. Its angular
momentum is A1 = v1r1. At ro what is the rate of rotation of the particle?
If angular momentum is conserved, then Ao = Ωor2
o = A1, and so the rate
of rotation of the ball at the radius ro is:
Ωo = (r1/ro)_2Ωearth sin ϕ (donde "_2" es "al cuadrado)
Thus if r1/ro >> 1 the earth’s rotation can be ‘amplified’ by a large amount. For
example, at a latitude of 42◦N, appropriate for Cambridge, Massachusetts,
sin ϕ = 0.67, Ωearth = 7.3 × 10−5 s−1, and if the cylinder has a radius of
r1 = 30cm and the inner hole has radius ro = 0.15 cm, we find that Ωo =
1.96 rad s−1, or a complete rotation in only 3 seconds!
Ya que me lo estáis explicando, hacedlo como dios manda

Si no, no hay quien se aclare
